

How Rail Transport Could Benefit from 5G

David Mottier

May 17th, 2017

MFR17 -ARC-380 Mitsubishi Electric R&D Centre Europe

Non Confidential / Export Control: NLR

© Mitsubishi Electric R&D Centre Europe

Trains and Radio

Train

control

Group

call

CCTV

Mainte

-nance

Internet

•

•

Mitsubishi Electric R&D Centre Europe

5G Key Radio Access Technologies

x10 spectrum efficiency

Use very narrow antenna beams for spatial user multiplexing: Massive MIMO

x10 network density

- Reduce deployment footprint: RF/Baseband functional split (RRH/BBU)
- Optimize mobility: Control plane/User plane separation

x10 spectrum

- Aggregate bands including millimeter wave bands (up to 100 GHz)
- Reserve low bands for coverage and use millimeter wave bands for capacity

1 ms latency

- Reduce the minimum slot duration: mini-slot, shorter symbols
- Distribute network intelligence close to the base stations: Edge computing

Mitsubishi Electric R&D Centre Europe

3GPP Evolutions Towards Verticals

From a set of **add-on** in 4G

- Mainly driven by public safety (adoption in US in 2012)
- LTE-Pro released in Mar. 2016 (Rel.13)

... to native requirements in 5G

- Mar. 2015: SA study on 5G use cases (FS_SMARTER)
 - Including critical communications
- Dec. 2015: EU Commission liaison with 3GPP to consider use cases from verticals as drivers of 5G basic requirements (phase 1)

Mar. 2017: SA study on 5G Communication for Automation in Vertical Domains (FS_CAV)

Including rail-based mass transit, surveying other SDOs' work

 RAN: Radio Access Network
 SA: Service & system Aspects
 SDO: Standards Development Organization

 Mitsubishi Electric R&D Centre Europe
 Non Confidential / Export Control: NLR

Source 3GPP, Mar.2017

5G Professional Scenarios: Reliability

for a greener tomorrow

- Train-specific service and architecture requirements (SA)
 Study on Future Railway Mobile Communication System (TR 22.989)
 - 8 categories of use cases (basic, critical, business,...) listed: completed in Mar. 2017
 - Work on Mobile Communication System for Railways (MONASTERY, TS 22.289)
 - In which existing specifications the FRMCS requirements can be included
 - New TS for requirements highly specific to railways: to be completed in June 2017

RRH with

arrays

massive antenna

- 🔥 Study on Architecture to fulfill FRMCS requirements (TR 23.790)
 - Gap analysis with current specifications: to be completed in Dec. 2017
- Train-specific deployment scenarios (RAN)

Study on 5G Scenarios and Requirements (TR 38.913)

• Critical train communications included in high speed scenario

Carrier frequency (GHz)	4	30	
System bandwidth (MHz)	200	1000	
RRH inter-site distance (km)	1.7	0.6	
Max. mobility speed (km/h)	500		

Typical radio parameters

• Completed in Mar. 2017, to be sent to ITU-R WP5D

 BBU: Base Band Unit
 RAN: Radio Access Network
 RRH: Remote Radio Head
 TR: Technical Report
 TS: Technical Specification
 SA: Service & system Aspects

 Mitsubishi Electric R&D Centre Europe
 Non Confidential / Export Control: NLR
 © Mitsubishi Electric R&D Centre Europe
 7

Tentative Roadmap of 5G Deployments

mmw: milli-meter wave MTC: Machine-Type Communications URLLC: Ultra Reliable Low-Latency Communications Mitsubishi Electric R&D Centre Europe Non Confidential / Export Control: NLR ©

- Many applications with different requirements
 - Throughput, reliability, service areas, train velocity
 - Ex: Platform CCTV (only close to station, at medium/low velocity)

Client services	Link		Safety	Application	Data rate	Number of links per line		Cumulative data rate (in kbps)		
	train	ground	Communications	priority	per link	nominal	maximum	nominal	maximum	
Train Control System										
	Car Controler	Zone controler	Yes	High	10 kbps	40 trains	100 trains	400	1000	
	Car Controler	Central controler	Yes	High	20 kbps	40 trains	100 trains	800	20000	
Maintenance Management System										
	Train Information	Central	No	Low	0.5 kbps	40 trains	100 trains	20	50	
	Car Controler	Central	No	Low	0.5 kbps	40 trains	100 trains	20	50	
Video Transmission										
	Train Video	Central Controler	No	Low	2000 kbps	2 video flows	4 video flows	4000	8000	
Audio Transmission										
	Audio in Train	Central Controler	No	Low	64 kbps	20 calls	200 calls	1280	12800	
Passager Information System										
	Train Information	Central Controler	No	Low	10 kbps	40 trains	100 trains	400	10000	
Other										
	Train	Central Controler	No	Low	10 kbps	40 trains	100 trains	400	10000	

Example of train radio access dimensioning (urban rail requirements, Source ETSI TR 103111)

- Dedicated spectrum probably not enough to handle all applications
 - Reserve dedicated spectrum for high priority operational applications
 - Use shared/public spectrum for lower priority applications

- Towards an heterogeneous infrastructure for FRMCS
 - 1. For the basic set of **high-priority applications**: Dedicated macrocell layer reusing existing GSM-R masts on UIC frequency bands
 - 2. For **new FRMCS applications**: Shared pico-cell layer taking benefit of future passenger-oriented deployment by telcos along railways tracks
 - Additional antennas on millimeter wave bands offering enough capacity

- Requirements of vertical sectors considered natively in 5G
 - Insertion of railway scenario and radio requirements in progress
- 5G stable products below and above 6 GHz may be available by the time of migration from GSM-R to the next standard radio system
- 3GPP is fully engaged on 5G ultra-fast development with first deployment planned from 2020
 - E.g., RAN1: ~600 delegates, 9 meetings/year, >2000 contributions/meeting
 - Making sure 5G technologies are validated for railway scenarios requires a significant effort by railway stakeholders
- The limited UIC dedicated spectrum may imply using two radio access network infrastructures with a phased deployment

A soft-migration of the current infrastructure (same sites & spectrum)

A new complementary capacity-oriented infrastructure after validation of 5G high-frequency technologies in railway environments

Thank you for your attention

Mitsubishi Electric R&D Centre Europe

MITSUBISHI ELECTRIC Changes for the Better